中文经典小说馆>玄幻奇幻>《西游·降魔篇》 > 32章 : 、事出反常必有妖
    时间回到二十七个时辰之前。

    王🉮🊩💿崎心满意足的走出了📝🛱☧自己的书房,长叹一口气。

    “完成了。”他的心中,满是劳动🕉🇰之后的充足🝗🋐感,但是却没有什么👎“惊喜”。

    这就是布尔巴基学派的方式。对于布尔巴基学派来说🟁,只有水到渠成,而没有“意外领悟”。

    很多地球数学家曾经这样形容布尔巴基学派的工作方式“他们的眼中,只有🎼🖘自己的目的地,却对路边的风景不屑一顾”。

    当然,朝着目的地一路进发,并非是错误的工作方🁻式。

    但是,对于数学家来说,有的时🙹🏐候,“路边风景”反而比“目的地”更加重要。🜝🃅🕗;

    或者说,在研究某个题目时发现的方法,比🋶🝵题目本身更有意义。

    最直观的体现,就是🟕🝄费马大定理,与🏄🗥哥德🍣🉺巴赫猜想。

    哥德巴赫猜想不说了。就拿费马大定理来说吧,费马大定理本身就引发了许多数学工具的诞生。希尔伯特计划,有费马大定理🀚☾的影子,而费马大定理的终极答案,“谷山-志村”猜想,又是朗兰兹纲领的🗓🛎🛓一部分。

    不然的话,谁关心当整数n>2时,🏄🗥关于x,y,z的方程x^n+y^n=z^n有没有正整数解?

    谁又关心任一♛大于2的偶数可🜺不可以写成两个质数之和了?

    也正是因为如此,有很多🏱数学家,非常痛恨🋶🝵布尔巴基学派,成它为“🍆无趣的”。

    但不可否认,有时候,这种工作,也是很有意🝗🋐义的。

    九卷《原算》的积累,地球🔥🂫👯历史的知识,在这一🇍🗒🛇刻🁻融会贯通了。

    王崎完成了基本引理的证明。

    所谓基本引理大概的🟕🝄意思是,它给出了🂗🎿🖳一个公式,是关于局部域上的约化群上的轨道积分和另一个群上的稳定轨道积分的之间的联系。

    这么说可能复杂了一点吧。

    毕竟,这是二十一世纪才被人完成的证明。

    数学发展到这个程度,就已经🜺不是凡人能够理解的了。要一个学数学的用“人话”跟你解释这个问题,他最终也只能绝望的表示“以你的理解能力,跟你说清楚这个是不可能的”。

    20🃥🙽08年,越南裔数学家吴宝珠在法国🍣🉺完🋶🝵成了对基本引理的证明。

    基本引理,是朗兰兹纲领的初步证明。

    而朗兰兹纲领又是什么?

    它可以说是希尔伯特计划的升级版,是许🍣🉺多数🝗🋐学家都认可的,数学界下一个时代的方向。